优惠论坛
标题:
基本概率,了解赌的数学。
[打印本页]
作者:
天策传媒
时间:
2008-7-8 00:09
标题:
基本概率,了解赌的数学。
了解机率和或然率
5 C, Y) l6 L1 R- Y
概率,也就是机率,机率是属于数学中或然率的一部分。或然率可用於我们生活中的每个部分:
7 I2 T7 d6 k' O$ l
天气、科学、商业、保险、股票药学等。明天会下雨吗?男人平均能活多久?医生,我有多少机会?它合用范围很广,这个在数学中重要的一环,和DB及对DB的分析息息相关。
" H ^& G# I0 g& a5 @" T( M
) C3 m% D" k- H# s7 _$ J
一堂速成的或然率课程
; G' V. e3 B- P) }: s
那么,什么是或然率?它是对
机会
规则的研究。大部分的人都很熟悉它的基本概念--或然率可以用来衡量一件事多常发生,或者更精确地说,可以期望它发生。虽然有些或然率专家们试著做统计,卻始终无法肯定;地球被小行星撞击的机率,或者一个小孩长大后成为百万富翁或奥运选手的机率。然而,其他的机率,包括DB中的机率,因为涉及的是我们知道全部结果的机制,因此可以准確地预测它的或然率。如果你丢一个普通的铜板,你掷岀正反两面的机率是一致的。丢铜板有两种结果,因此你丢岀正面的机率是1/2--每两次你有一次丢岀正面的机会。
7 ]8 Y/ w4 s; P2 g9 e
所以,机率对一特定事件(我们称之为
X
)的发生来说也是一样的。它把
X
可能发生的数目,和所有可能发生的总数(我们称之为
Y
)相比。可以这样来表示机率--写成
P(X)
,读成「
X
发生的机率」--可以比率或分数的方式表达之。
. s" d: _/ U$ z( C& H
P(X)=获得X结果的数目/所有可能的结果(或Y)
7 p, _9 Z+ c* v3 E' u; w
所以,在一副标准的52张牌中,抽中一点的机率是:
5 h4 Z0 _ E7 |! h: u
P(拿到一点的机率)= 一点的牌数/所有的牌数
n/ b B, s' J; V+ V- ~6 g- h
= 4/52
( J" g, |+ g0 o+ ~
=1/13
3 `+ _& ^ m7 A
4 }8 _( N1 w7 {; B4 {
# o9 S, K S# g4 ?
其他任何一种机率的表达方式
+ Q1 w* ?" A, w8 w
机率有许多表达方式。虽然它们所指的都是同一个东西,但是在不同的情形下,某一种形式可能会比其他的来得方便。我们就来看看在52张牌中拿到梅花的机率。
# U }7 J3 D u0 ?7 b. ~
P(拿到一张梅花)=梅花的牌数/所有的牌数
4 Z5 Z9 E" J! x h) P% @
=13/52
7 t* ^1 ~) P) ?" n
=1/4
$ v, b% E d; z( n# k! @
首先你要注意的是,13/52这个分数应该化简成1/4。一个简化过的、较为简单的形式通常看起来会比较顺眼,也比较有意义。如果你在书中看到一个机率,没办法一看就有感觉,那么很可能你必须先化简它。
6 J. w( T# q& ~" k: O
让我们来看看几种拿到梅花的机率的方式。我们可以用小数的方式,0.25来表示四次中有一次的机会,或是说有25%的机会拿到梅花。
: ^- |" w7 J8 r+ ^" I
当人们说机率是50-50,他们指的就是两次中有一次的机会,也就是有50%的机会会出现这种情形,而有50%的机会不会出现。表示机率的时候,有时候我们用分数,有时候用小数,而有时候用百分比。
4 g$ J* Y$ A$ m
表达某一事件机率的不同方法
# P& K: Y- A0 ]2 B: j0 K2 L
1)事件 抽到梅花
. m1 l) ?* {+ Y
2)敘述 梅花的牌数/总牌数
' f& N$ q0 P3 |+ ^1 g% E. k2 l
3)分数 13/52=1/4
( ?+ p% H1 V! j# u+ ?
4)小数 0.25
$ h) L$ c% j" q6 S2 D. b
5)百分比 25%(小数X100)
0 u- I ` a2 W$ {% k2 F
6)发生率 四次中有一次
- g7 A6 D, j0 {' b+ Y7 S
7)比 3:1
/ a9 I) p1 E9 ^+ Z
7 u7 y; D. ^! c/ f! }# X1 n! z5 v; z! Z* X
基本机率法则
. ^4 `! G+ y' T9 H
如果你能了解以下的规则,那么就不难理解大部分对DB的解释和分析。
) L/ X. O1 _, X7 R _
(1)任一事件发生的机率必介於0和1之间
6 o1 Z# O; |8 M6 Z6 Q6 J* O
当机率为0时,表示该事件不可能发生;例如:用一个正常的六面骰子掷出7点的机率,这是绝对不可能发生的。
2 h% W' \$ j6 u$ I0 f
当机率为1时,该事件百分之百会发生;例如,用一个正常的骰子,掷出1到6点的机率即为1(当然扣除骰子边沿著地的机会)。
/ m; ?# G2 M+ V3 C0 a* F
机率永远不会有负数--0(表示该事件不可能发生),小於0的数字不具任何意义。
1 Z6 n5 Z, W6 b+ e! h1 }
(2)一件事会发生和不会发生的机率总和为1
" r, {' |4 O$ t) J5 Z; S4 e
为什么呢?因为所有结果加起来的机率一定是1(100%)--不管是不是你要的结果,一定有事会发生。
" b8 E8 L8 [( k6 d
例如:用骰子掷出2的机率为1/6,加上掷出不是2的机率为5/6--总和即为1(1/6+5/6=1)。这看起来很理所当然,但是当我们间接推算机率的时候,这可是相当好用的方法。举例说,你想要知道在一副正常的52张牌中,抽中梅花的机率是多少。但是你並不了解整副牌的组成元素。你只知道抽中非梅花的牌的机是3/4。其实知道这样就够了。
" D6 y, n4 x1 h. V
P(抽中梅花的机率)=1-P(抽中非梅花的机率)
; ?- n4 M" C4 ~$ J
=1-3/4
: R! t. d% V6 g5 L0 H
=1/4
9 F. I' o( e" n; ?3 Y4 g6 ^' B" j
3 f; ~. x6 {! S) g' i8 `
(3)连续事件发生的机率等於各独立事件机率的积
8 q: S" J8 a' O
是的,这听起来很复杂,但是你或许已经很熟悉这个规则的运用方式了。这么说吧!假设你想要计算连续丢出两个1点的机率好了,丢一次骰子获得1点的机率是1/6(共有六种可能的结果,只有一种是你想要的),而掷出两次1点的机率为:1/6X1/6=1/36。每次掷骰子都是「独立事件」(两者互相无关),而发生这种「连续事件」(丢出两次1点)的机率即为二独立事件(1/6)的积(即相乘的结果)。因此,这连续事件並不一定是要同一颗骰子丢两次才行,如果同时丢两颗骰子,也可以构成连续事件--因为两事件各自独立。
7 A4 t( x: G/ {
再举另一个例子:你同时丢一颗骰子跟铜板。那么,你丢出铜板正面且骰子为1点的机率为何?此为二独立事件,该事件的机率即为两独立事件的积。丢出铜板的机率是1/2,而丢出骰子1点的机率是1/6。因此发生此事的机率为1/2X1/6=1/12。
9 r4 s* c6 K+ v' _" ^- o: C7 c
! I+ @! c6 Z9 V7 D! [7 G
(4)两非独立事件发生的机率亦为两者的积,然而,当事件发生时,后发生的事件会受到先发生事件的影响。
+ K9 Y' h% B/ b& B- b$ \, } [& @3 B
这又是个令人困惑的说明,但是如果举个例来说就很清楚。例如:你想算在一副牌牌中,连续抽中三张梅花的机率。它的机率为13/52(52张牌中有13张梅花)X12/51(一张梅花--一张牌已被抽走了)X11/50(两张梅花--两张牌已经被抽走了)=0.0013或是1.3%。如果你在每次抽完又把牌再放回去,那就变成独立事件,抽到三张梅花的机率13/52X13/52X13/52=0.16或1.6%。
, d. t! S+ e# t0 y, ]
( W9 d. G# V% k3 @; @2 X
经典的机率实例
5 ]! `! b7 S& k) g
即然我们已经了解机率的基本概念(不是吗?)我们就来看一个经典的机率实例,让它告诉我们现代机率理论是从何起源的。
: U- Y- D1 x1 m2 w I
在十七世纪,一位名为薛瓦里耶。德美尔(Chevalier de Mere)的法国贵族,他是一个用骰子来赚钱的骗子,他跟对方下同等金额的注,赌说掷4次骰子,至少有一次会出现6点。他的理由如下:
" j& O# I- Z' S) V# s+ w
P(6)=1/6
3 t. F+ I8 M/ n3 X
P(6)=掷4次的机率=4X1/6=2/3
4 I! d* e/ k' n, q
他的这种赌法赢了不少钱。虽说他的推理是错的--我们等一下很快就会看到--但是他还是佔有优势。(你已经知道他为什么错了吗?)
, ~5 u3 H% }% b
当玩这种游戏的受骗者变少后,薛瓦里耶开始改玩另一种赌注。他也是用同等赌金,打赌在掷两颗骰子24次时,至少会出现一次两个6点。他的推理如下:
1 U& h2 H q- r& k0 ]
P(6,6)=1/36
6 Y/ E: Y! |2 A; o& H! I0 i
P(6,掷24次中出现6的机率)=24x1/36=2/3
3 z8 i! _& t: F
但令他惊讶的是,他开始输钱了。所以他就问他的朋友--数学天才巴斯卡,为什么会发生之种事?巴斯卡觉得相当有意思,就问另一位数学天才德佛美。他们的想法一致,因次就創造出现代机率理论。(而我们竟要感谢一位骗子的老祖宗!)让我们来看看他们研究薛瓦里耶的问题的结果。
0 n* b% y' Z$ `; ^% U) l
在第一个例子中,我们知道 在任一个骰子中,掷出6点的机率是1/6。但是,解决这个问题的真正方法,是要算
没有
丢出6点的机率是多少?很自然地,它就是5/6。所以,如果薛瓦里耶想知道真正的结果,他得知道 掷4次骰子时,没丢出6的机率。每次掷都是独立事件,请用上次提到计算独立事件机率公式,我们就会得到以下的结果:
: `: a& @$ ~* I
P(4次中没有掷出6点)=5/6x5/6x5/6x5/6=0.482
# C& z& J' H& S2 i
这表示有48.2%的机率不会丢出6点,因此薛瓦里耶算错了那个赌注。现在要算至少丢出一个6点的机率就很容易了。记得,有些结果一定会发生,那就是为什么我们用1减掉0.482。
T2 g6 c0 F) q# r
P(掷4次骰子出现一次6点)=1-P(掷4次没出现6点的机率)
( L( ]5 Q. N- a7 u
=1-0.482
! u% V, \5 N) q, z( |
=0.518
% Q( K& I& l: i
所以,薛瓦里耶有51.8%的机率赢他的同等金额赌注,这就是为什么他能赚钱的原因,虽然机率不是他想的2/3。用倒回去的方式解决这个问题,虽然似乎和直觉相反,但实际上是比较容易算的。
2 z6 o) {. R# V m" m/ [
薛瓦里耶最初的理由也是站不住脚的,如果我们再往下看一个步骤,用他错误的方法:如果掷6次骰子,掷骰子的人
必定会
丢出一次6点。很显然这是错的,也让我们知道为什么要算
没发生
该事件的机率是合理的。
; n: g2 x0 n4 K( p
现在让我们看看薛瓦里耶输的那个游戏:他想知道 在掷出24次骰子中,同时出现两个6点的机率为什么不是24/36。同样的,算出不出现的机率也是比较容易的:
% t% R7 q% l" A, L r8 p7 q: T
P(掷出24次骰子没掷出12点的机率)=(35/36)^24
! i$ M* {. c; b- T) m- C# _
=0.509
9 |/ i; q) n6 m1 `4 m
因此:
# Z/ x- N* m1 i
P(掷出24次出现一次12)=1-P(掷24次骰子没掷出12点的机率)
' F( F4 s2 }! w/ I% q2 F# ` ~1 e! l! c
=1-0.509
, b0 U' l7 T% A, {- q
=0.491
1 v% x$ |$ S ^7 j8 N4 k. t4 F0 q
$ R% p5 }" V) w/ z1 R ^7 s t* |
啊哈!薛瓦里耶在第二种游戏中的机率只有0.491,也就是只有49.1%得胜,那就是为什么他会在这个相同赌注的游戏里输的原因,老千反被老千误,但是他真的很幸运,因为有当时最历害的几位数学家帮他解围。
7 k: e+ G! r% y7 F
8 ] n9 s$ V2 C0 A& |0 [" {( `; q
一旦我们了解到一件事发生的机率,下一步就是想到该事件发生的「比」。如果说机率所描述的是一椿希望发生的事件与所有事件间的关系,则比所描述的则是希望发生的事件与不希望发生的事件间的关系。
0 A+ Z" Q+ A' z) V& M8 c& ?! ~/ G
就传统而言,比通常被认为是「不发生」该事件的比。这或许是你在进DC玩任何游戏时,最先想知道的吧!
% o2 P, `# Y$ B$ d* \- X! K' s
让我们再拿梅花的例子来说,我们知道它的机率是1/4;四次当中有一次成功的机会,有三次失败的机会,因此,该事件(抽到梅花)真正的比是3(失败的机率)比1(成功的机率)。或许这时候你会皱眉头想一下,「但是一副牌不是有52张吗?3比1的真正意思是什么?」好的,说3比1等於是说39(非梅花的张数)比13(梅花的张数),分数巳被化简过了。
1 I) e) v' ]0 D4 }
当你丢一颗骰子,希望丢出2。丢出2的机率是1/6。比率是5比1;这也可以写成5-1。要了解「A-B」等於是说「A比B」。
6 ?; k1 h' z* L" K! ~: e
$ Z4 x* z) z& O: H& w
比不一定永远是「多少比1」,但是所有的机率都可以写成比。遵守一个原则:把机率写成分数,假设是X/Y。记得,Y是所有可能发生的机率。而X是成功的或是希望发生的机率。所以用Y减掉X,你就可以算出所有你不希望发生事件的数目,然后就可以算出比。发生X事件的比为「Y-X比X」。假设某事件发生的机率为9/35。这不是个漂亮的数字,但我们还是算得出来。该事件发生的比是26比9。习惯上,我们会把它化简成一个较容易了解的形式,即使它不是整数。例如26比9可以化简为2.89比1。
, y0 d0 L! \1 P- Y5 W
& [, t7 d2 ^5 J5 a" q( W0 Y
/ q7 S0 r. T# p8 W2 _
作者:
天策传媒
时间:
2008-7-8 00:15
标题:
re:[u][b]DC比[/b][/u]真...
娱乐城比
! e1 j2 t0 i, t& {1 V A
真正的比,也就是一件事发生实际上的机率,可以在娱乐城里看出来。不然,长久下来,娱乐城是赚不到钱的。娱乐城比会告诉你从你的赌注中,你将会赢回多少钱。如果娱乐城的比是2-1,而你赢了,那就表示你每赌一单位,你就会赢回你原本赌注的两个单位。所以,如果你在一个2-1的游戏中赌1元,而你赢了,则你该拿回2元的利润及你原本的一元赌注,总共是3元。(这种比可写成不同的形式:2比1、2-1、2:1。)
6 M- u* T6 @' v2 g- x+ e8 z+ ^
而同额赌金的赌注表示其比1-1。在这情形下,如果你赢了,你将会赢得与你赌注相等的金额。(1元同额赌注会赢回2元-----你原来的赌本加上1元的获利。)
4 k+ P& X* e& J7 ?5 D6 d5 i+ s/ ~) U
有些游戏会标示它们的机率是「A赔B」而不是「A比B」。如果是这样的话,你每次赌B,A的总额将还给玩家,包括玩家的赌本。例如:一个赌注是5赔1,而你下注1元,你将会拿回5元,这个数字就已经把你的赌金包含在内了。所以你实际上的获利只有4元,因此5赔1的赌注实际上是4比1的赌注,这其中有很大的差别,不要因为看到数字比较多,就以为你会拿回比较多钱----要看看是「赔」或是「比」,而且你要知道
% y+ A; P* a+ }
「A赔B」等于「(A-B)比B」。
2 a- _; C7 `0 i* w
这个比,大家要小心,很多人就会搞错。给个小习题大家做,大家在21点赌台上面看到的
+ l2 T% ^+ k+ i2 _: K! j, }5 f+ H( e
BLACKJACK PAYS 3 T0 2 和 INSURANCE PAYS 2 TO 1 是什么意思呢?
1 J' h8 h' @) d) d( W6 L4 w: L
8 e/ |% a8 `& I
了解娱乐城的优势
! H! S$ c) _# N* u; z
我好像听到你这样说:“谢谢你帮我上机率课,但是我是准备要去赌一把的啊!”别这么急,难道你不想知道娱乐城怎样从你身上榨钱,而这样的机率有多大吗?机率和比让你了解到在一个公平的世界里,你该期望些什么?但是我的朋友啊!娱乐城可不是一个公平的世界。
9 |* m. Y4 i h1 u
玩家口袋的钱之所以会跑到娱乐城保险箱里的原因,是娱乐城根本没付他们所该付的。他们並没有作弊,他们也没有耍老千,他们也不是靠玩家手气背或是太笨(虽然这样对他们很有帮助),但他们靠的是数学。我们一起来看它是怎样运作的吧!
, K- ^# `& d/ Q N5 |
# J' }; m5 D$ z- m$ b
期望值
0 w3 {3 [0 l7 _( W. F3 `& n
现在该是秀出Dubo101法宝的时候了。是的,你猜到了,是铜板。假设你朋友找你玩个游戏:她抛一个铜板,你猜出它的正反面。如果你猜对了,你就蠃1元。如果你猜错了,你就输1元。如果铜板没有机关,是公平的,但这是个很无聊的游戏。最终,有一半的机会你会赢1元,一半的机会你会输掉1元。你获得的钱就是根据实际比(1-1),而最终,你不会输钱或蠃钱。你的
期望值
是0。
# f" Q7 A* H; G% W e
但你可别希望当地的娱乐城(或是你那些比较有心机的朋友们)会让你玩这种游戏。娱乐城版的游戏很可能会是这样:如果你猜中了铜板的正反面,你会赢90分;如果你猜错了,你会输1元。当然你早就知道那是很差劲的,那你对该游戏实际上的期望值是多少呢?期望值,通常指的是
期望的值、期望的结果、期望的胜利、期望的回收
,它可以告诉你所下的赌注可以期待赢或输我少。为了要算出我们能期待赢(或输掉)某个特定的赌注,我们要看看输赢的结果及其与金钱的关系。这会告诉我们特定一个赌注的期望值(在这里简写为
E
)。我们来看看你在这个赌注中的期望值:
) R7 ~+ G7 ]! _2 Y4 g: O
2 g8 h+ t* x6 l8 t( y# S) Z
E=[P(赢的结果)X(赢的数目)]+[P(输的结果)X(-输的数目)]
8 K" `0 o/ r3 g. p4 `
E=[P(猜对正反面的数目)X($0.9)]+[P(猜错的数目)x(-$1)]
+ Y8 t a) d( _! m# c
=[(1/2)x(0.9)]+[(1/2)x(-1)]=-0.05
& F& A+ K1 G0 o. q2 [0 [4 {! w4 g
因此,你每赌1元,可想而知会输掉5分(0.05元)。如果你玩这游戏玩得夠久的话,娱乐城就会赢去你所有的钱啰!
8 d* q# T# t% l4 @' W
* U" g! @; ?9 T/ z) n
我们用铜板举例是因为它明瞭易懂,但是它实在是太过简单了。上述所有规则几乎适用於所有娱乐城的游戏,最重要的是,娱乐城藉由付出低於实际机率的钱,以达到营利目的。你或许算不出一个特定游戏的每个数字,或者知道它确切的统计数字(这就是为什么我在这里的原因了),但是现在你巳经知道,当你没有得到与机率同等的报偿时,你是居於劣势的,就像刚刚丢铜板的例子是一样的。
( d+ M* z4 |6 b' @: @1 Z
你要成为一位认真的赌者,绝不能把期望值放在一边不管,因为有个很好的理由--期望值让你知道你该怎样计划,在最后都能把你的钱从一个游戏(或一把赌注中)赢回来。你可以用期望值当作你玩游戏的黄金准则,或者你可以把期望值变成一个你比较熟悉的词--
庄家优势
。
( u7 |2 E) u4 @
1 D* \7 R4 T T* h/ T4 F! x4 s
庄家优势
5 b$ ]: ? L) h( w4 A. F, X: z# Q
庄家优势,也叫娱乐城优势,是通常用来衡量一种游戏的指标。庄家优势越大,娱乐城就有越多优势。
" _. u4 V. y/ q6 |. @4 f7 a
很简单,庄家优势只是把期望值换成百分比而巳。这要怎么算呢?首先,我们要把它转成最简单的形式,所以你要把期望值除以赌注的总数,以获得你每赌一元期待有多少结果。举例来说,如果你每赌3元的期望值是-$0.06元,每一元的期望值就是-$0.02。(如果可能的话,我们以一元为单位来计算期望值,然后略过这个步骤,因为这样的期望值已经是每一元赌金的期望值了)你只要再把期望值前的负号去掉,然后再乘以一百,变成百分比。因为传统上百分比都是「正」的 ——从庄家的角度而言-- 我们不得不屈就於现实,因为大部份娱乐城里的游戏都是对庄家有利的。
9 D# S3 G U1 U* c% D
以丢铜板的游戏而言,你会得到以下的结果:( 我列出除以每一元赌金这个步骤,虽说这通常是不必要的。)
& o* w% ^, B" s* ]8 p3 j
庄家优势=(0.05X100)/1=5%
2 H! l" R+ X# @
庄家优势正告诉了我们期望值的作用:每1元里有5分($1里有5%)最后会变成庄家的。就玩家的观点而言,它应该是负的才对。如果你偶然遇到了玩家期望值是正的机会——表示你可以在游戏中赢钱?在这样的情形下,庄家优势是负的,这是很令人困惑的,但是如果你站在娱乐城的角度来看,就是一致的。
- Q% ~ ]: K: P
描述游戏期望值的各种不同方式
' W" ?) G% S' `9 K. p/ m& s
双零轮盘
" a) N" e H0 V2 v6 P
玩家每赌一元的期望值 -0.0526
4 S) L0 f; b+ b' b+ z$ Y
庄家优势 5.26%
! a! w( f! ]4 D! N& t
理论上每次赌注会输的金额 $0.0526
6 _' M9 h9 _# S3 q
回收百分比 94.74%
6 {* S4 Z7 Z2 H5 y
理论上每一元可以回收的金额 $0.9474
' V: B8 b: M" C6 d, H( v
在很多地方,庄家优势都将以正数表示,那表示它对你不利。它越高的话,情形就越糟;当它是恰当的时候,我们就会提到玩家正的期望值。另一种表示的方法,就是提到报酬率。我们在提到吃角子老虎机及电动扑克机时常提到它,这跟提到庄家(庄家优势)能赢多钱的表示方式正好相反,报酬率指的是玩家能赢得多少钱。如果说一个东西能有97%的报酬率,则表示你每赌一元可以回收97分,而庄家获得3分。
& y5 ~( R3 L) S7 O& h: c* `; t% M% w
待继。。。。
' P6 o8 L7 C, B/ F
作者:
gui shou
时间:
2008-8-19 19:42
标题:
re:很好的一个课题,Dubo就是需要学习各方面的...
很好的一个课题,Dubo就是需要学习各方面的知识,打下稳固的理论基础,不想盲赌就要努力学习。
作者:
markchoi2
时间:
2008-9-12 06:03
标题:
re:忍,等,稳,狠,这四个字说得太好了
忍,等,稳,狠,这四个字说得太好了
- I5 h5 Z( U6 X# C
作者:
天策传媒
时间:
2008-9-12 19:11
标题:
re:[b][size=2]继续上课。。[...
继续上课。。
1 K7 n- B% R3 D! E4 E" m
让我们来玩个游戏吧
5 \1 V6 j; `! M5 t# }
让我们把所知的规则运用在一个很简单的机率游戏:假设当地的娱乐城迫不及待地发明出这种无聊的游戏:在一个黑碗里装13颗弹珠,包括9颗蓝的,4颗红的,所有弹珠的大小重量相等,除了颜色以外没有其他差别。每次玩游戏时都是任意选取弹珠(没有经过刻意的挑选),你可以赌说它是红的或蓝的;娱乐城的比是蓝弹珠7赢5,红弹珠3比1。你该玩这个游戏吗?如果你想下注的话,该如何下注呢?首先,我们列出所有可能的机率:
# I; N; Y5 t6 V( `# h
弹珠游戏的机率
& m5 e; @) P/ s7 q% U" f8 w' ^
事件 抽中蓝色的机会
. I2 m% L8 o3 m, v
分数 9/13
, k, |% B( Y5 W) L) e+ g+ p
小数 0.6923
9 v5 J) E5 W: R! ~/ n! C
百分比 69.23%
( J4 W: l" O* ]
比例 4比9
N8 v4 ?' q7 c
发生机会 1.44次中有1次
( }3 i) K% T* Y$ j
事件 抽中红色的机会
0 s2 T2 ~* m3 {! D9 `
分数 4/13
' h) g2 `7 X2 Q5 i" q0 @3 E6 W
小数 0.3077
9 o" B H+ t3 o7 G6 o
百分比 30.77%
) e; g8 ~; J* H0 N) p/ N1 @
比例 9比4
0 }& F( }' y0 M ~) ^% D! H
发生机会 3.25次中有1次
6 |$ Y2 f" }. ^" ?. H
我们来看看你赌蓝色的话会发生什么事?因为它的赔率是7赔5,实际上也就是2比5(如果你觉得困惑的活,请见前面的「娱乐城比」)。
% g/ G4 Z/ U0 y' D m
这表示当你赌5元时会有2元获利,而你也会把你的5元赌金赢回来(总金额是7元)。请比较娱乐城的比2比5和实际应有的比为4比9;在娱乐城里,你要赌10元才能赢4元,而实际上的比卻显示你只要花9元就可以赢4元。在这里我们就能夠看到娱乐城的典型作法,付比实际上应付的钱少以获利。现在我们来算算期望值及庄家优势。记住,你每赌5元,抽中蓝色的话只能帮你赚2元:
! y2 `/ r( G) j( `
E=[9/13x(+2)]+[4/13x(-5)]
5 C. s) B/ X1 F& ]
= -2/13=-0.1538
& ], Q4 o/ C; H7 A, H0 B& G8 T
每一元赌注的期望值=-0.1538/5
1 ^; ?3 [) W- c+ N( {% w: x
=0.0308
1 ~! D y. O( |, i1 u
庄家优势=3.08%
1 W8 j: Q' s: a0 c( Z$ z, c" Q
所以我们每赌一元,就期望输掉3分。这虽然看起来不怎样可怕,但也不怎样好。再接下来我们要讨论怎样估计庄家优势。
0 M6 }$ t; F' M7 ?+ c+ Q" H
作者:
天策传媒
时间:
2008-9-12 19:12
标题:
re:[size=4]现在我们来看看赌抽中红色...
现在我们来看看赌抽中红色的情形:比例显示为3比1,把它与真正的机率9比4相比,如果你赌4元会抽中红色,娱乐城会给你12元,再加上你原来的赌金,实际上的机率告诉你只会赢9元。嗯,我们来算算庄家优势的期望值:
% L; X) P% l) w7 [' C6 ^2 g
E=[9/13X(-4)]+[4/13X(+12)]=12/13
* I, p# A6 @+ H* k e5 }3 s$ r$ m
=0.9231
5 n) I5 O( k% A3 r
每赌1元的期望值=0.9231/4=0.2308
) Z9 r: c5 P; u* `, q
庄家优势(?!)=
-23.08%
4 J" T( J, t2 \( e
看起来似乎娱乐城犯了一个大错。庄家优势並非是优势啊(因为出现负号)!这样的赌注可是对玩家大大有利。玩家每赌一元最终就可期望回收23分。对娱乐城而言,这个虚擬游戏大概会被称着「不幸的13」吧!
) [$ y$ E) R# f1 R% O
你或许已经注意到了两种不同的机率表达方式:
7赔5
和
3比1
。这样做是为了要让你更熟悉机率的表达方式,但我也偷偷地犯下一个每个玩家都想发现的「错误」。(可别因此就抱着希望,因为你很少或几乎是没有机会找到这种错误,机率接近0。)一家精明的娱乐城会把抽中红弹珠的机率改成3赔1,也就是2比1。这就完全地改变了赌注的期望值,而结果就变成庄家优势是7.69%,那可是有很大的不同喔!(你自己算一次看看吧,来吧!我知道你很想算一次。)一个游戏告示的印刷错误,对精明的玩家而言就像天堂一样,而对娱乐城来说则是场大灾难。就像我说过的,你绝对不可能遇到那样的事,即使是接近那样的事也相当不可能,但那也是个诱人的好例子~或许有些夸张吧~告诉你了解怎样下赌注是值得的。
作者:
天策传媒
时间:
2008-9-12 19:18
标题:
re:[b][u]思考庄家优势[/u][/b]...
思考庄家优势
! E: `- V- V& x* f
藉由数字的计算,可以让我们知道庄家优势的具体概念,但是我们别忽略这优势告诉我们什么----娱乐城佔优势的时候並非我们输的时候,而是我们赢的时候。是的,你没有看错。在大部分的游戏中,庄家优势榨乾了你赢的钱,並非你输的钱。为什么呢?因为当你赢的时候,你並没有拿到合理的赌金。
& a) v% _) s! M* H# t" e8 P
我们已经看过它了。回到丢铜板的例子吧。真正伤害你的並非你输1元,而是因为你赢的时候只得到90分。最终你的输赢总和----也就是你猜正反面的结果----会是相等的,但是你的钱卻不相等,因为你赢的时候並没有获得足够的钱,这就是娱乐城偷偷抽税的方法。玩家们总是在为自己输钱懊惱不已----当然,这在短期内是会造成伤害的----但是他们真正该担心的是,当他们赢的时候「输掉」多少钱?很少玩家知道或观察到因为庄家少给钱,所以他们玩的並不公平的游戏。
' K5 `7 C" }; k6 X$ c
你可能偷笑地想著:「别想用似是而非的话迷惑我,我赢的机会总比输的多。」我同意。如果我知道我总是会赢,那我就不用去想我得到的是不是真正应得的比例,或是恰当的比例,但很可悲的是,事实和机率告诉我们,我们会赢一些也会输一些。这样说吧:如果娱乐城有个游戏只有两个选项让你下注,而你两边都下注,你还是会输。你不会没输没赢。你不能打平的理由是因为你赌赢的那边----那是一定会发生的事,因为只有两种可能----没有给你它该付的,而与输的那边无关。
& Y7 V/ l+ Y+ F$ A: }5 \
这在玩轮盘时最明显了。你在每个数字上都下一样的赌注,轮盘停下来的时候,当然会落在其中一个你下注的数字上。那么,你会赢钱吗?当然不会。每个数字真正的比是37比1,而娱乐城只会付你35比1。如果你在每个数字上都下注1元(共37元,单零轮盘),你赌中的那个数字只会帮你赚35元,加上你原本的1元,你总共还输1元。你没得到你应得的数字,而那就是庄家优势。了解这狡猾的机制怎样运作是很重要的,别认为你是在猜迷游戏中跟庄家比赛,因为你时间算错或是运气不好才让你输的。你是真的在跟他们玩一个你最终不可能赢的游戏。要成为一个老练的娱乐城玩家或职业赌徒,你就要了解娱乐城的秘密收费。
作者:
shhplayboy
时间:
2008-9-21 12:52
标题:
re:看看,能不能有收获,估计能学到点东西。
看看,能不能有收获,估计能学到点东西。
作者:
hjfhjf
时间:
2008-9-29 12:48
标题:
re:很好的一个课题,
很好的一个课题,
: W8 Y0 @/ B! z0 E# T
作者:
gui shou
时间:
2008-10-6 10:59
标题:
re:这么好的文章,居然如此少人看,可惜,可惜...
这么好的文章,居然如此少人看,可惜,可惜。
作者:
yyx1414
时间:
2009-3-24 04:24
标题:
re:好文章,顶一下。支持!!!!
好文章,顶一下。支持!!!!
作者:
baifan69
时间:
2009-3-24 22:11
标题:
re:学问多多啊!怪不得能挫败DC!呵呵!
学问多多啊!怪不得能挫败娱乐城!呵呵!
作者:
agu927
时间:
2009-3-31 17:01
标题:
re:真是好文章啊
真是好文章啊
作者:
球探亨利
时间:
2009-4-27 23:52
标题:
re:[COLOR=#ff0000]真是好文章...
真是好文章
; U$ R( I1 F$ v' o1 X0 T! I2 M! ?
5 }) i }/ w% q: V& z7 }* h
作者:
023cp
时间:
2009-11-4 22:41
概率很重要呀!
作者:
ck6767
时间:
2009-12-23 04:42
看看好东西!!!!!!!!!
作者:
andyzh
时间:
2009-12-23 13:33
太好了,长久实用
作者:
ayfa88
时间:
2009-12-23 19:20
继续学习。
作者:
97212497
时间:
2009-12-27 21:39
恍然大悟,但我已失败太多拉。真不知该如何才好啊!不赌已输的就白去啦!难啊,
作者:
jacky52008
时间:
2010-2-20 02:04
看看,我也来学学``
作者:
痛苦的天空
时间:
2010-3-4 11:25
意志和想像较量,意志永远是输家
作者:
tzdb
时间:
2010-4-7 23:21
学习了,不懂概率赌是盲目的。
作者:
黼蔀黻纪
时间:
2010-4-10 20:46
非常好一个课题
作者:
弓虽
时间:
2010-4-30 14:17
哗!想不到我进了个宝库,真是受益非浅!谢谢财神老大!
作者:
hunanduanxia
时间:
2010-6-15 08:46
这么好的文章,怎么没几个人看??
作者:
wait1997
时间:
2010-9-23 20:07
财神老大的文章太深奥了,说实在的看不懂
作者:
lsxlijie
时间:
2010-10-24 08:02
好文,学习,提高,训练,实践,赢钱
作者:
wenchenbo
时间:
2010-11-12 09:39
这可以一篇好文章啊
7 B7 K( M$ R$ L- p# W. o
充电
作者:
xq11xq
时间:
2011-10-28 11:59
回复
17#
andyzh
" R. S& N$ Y& d9 j' G' ^; B
! a. X" X% G5 h: |
好东西,学习
作者:
xiaoyaomso
时间:
2011-10-28 15:17
看得头都晕呀。能说简单点没
作者:
wait1997
时间:
2011-10-28 15:32
老大讲解好深奥。初中学历的看不懂
作者:
wuxi888
时间:
2011-11-5 20:55
太深奥。。。。。
作者:
xyl
时间:
2011-11-10 11:51
基本概率,了解赌的数学
作者:
jeffliu6
时间:
2011-12-6 09:41
温故而知新哪,谢谢财大
作者:
xiaoshu
时间:
2011-12-22 19:53
学习中。。。。。。。。。
作者:
xiaoshu
时间:
2011-12-22 20:31
学习中。。。。。。。。。
作者:
belong
时间:
2011-12-29 16:10
好文章,可惜对一般的人来说,好象就是不理解!
作者:
Q546019539
时间:
2011-12-30 01:01
我虽然没细心看,但是老大的东西一定要顶
作者:
kobe0824
时间:
2012-1-1 19:40
我承认我数学不好!
5 \8 K4 Y& e/ B* P2 S& {7 _
:Q
作者:
hk7778
时间:
2012-1-7 00:55
回复
1#
天策传媒
6 @# O+ z) l6 I( S: I7 N
* G$ _- |+ w. U; c3 u3 |% k
0 A9 K: N4 m1 l( W
学习中~~
作者:
jamstian
时间:
2012-3-5 12:27
一定好好学习,太长了,收藏起来,慢慢看。这是宝贝呀
作者:
sunkist808
时间:
2012-3-6 16:15
这么好的帖子啊,谢谢财神老大啊。
作者:
wenhaicheng
时间:
2012-3-6 16:20
好好领会, 有益
作者:
sunkist808
时间:
2012-3-7 08:33
看了,两天了,好像,还真的不太懂,有部分。
作者:
梧桐
时间:
2012-3-8 13:58
好文章,顶一下。支持!!!!
作者:
小宇
时间:
2012-3-10 08:57
提示:
作者被禁止或删除 内容自动屏蔽
作者:
longlongzun
时间:
2012-6-18 02:30
学习下!!!!
作者:
百家乐一味
时间:
2012-6-20 10:28
我勤奋学习专业知识,努力把理论知识运用到实践中去.
作者:
bing121
时间:
2012-6-20 23:35
再看看老大的贴子,领教了。
作者:
陈妮妮
时间:
2012-6-21 10:16
谢谢财神老大分享~今天长知识了:kiss:
作者:
那一抹smile
时间:
2012-6-25 13:42
这个有点难啊 郁闷
作者:
markbet
时间:
2015-7-19 21:16
我还有好多都是不了解 的啊
作者:
lynn001
时间:
2015-8-12 12:45
菠菜就是一个概率游戏 赢家只有庄家哦。
作者:
飞鹰坠落
时间:
2015-8-23 20:00
赌的数学我不知道 我只知道百家樂靠的就是运气
作者:
收米哥
时间:
2015-8-26 19:04
感谢奉送这个啊
作者:
benlau0214
时间:
2015-9-15 14:03
这个东西好深奥的啊,好难学
作者:
老牛了
时间:
2015-9-15 16:29
太好了,长久实用
) J k0 s7 y$ c# g0 j6 b
太好了,长久实用
( H% V& F! n( B! g$ \
作者:
lovetian
时间:
2016-2-26 09:41
数学方面是我的硬伤。。看不懂。。
作者:
澳门一游剩300走
时间:
2016-3-1 13:01
成为百万富翁或奥运选手的机率
作者:
dsseven
时间:
2016-4-5 15:44
很好的文章,需要时间消化,感谢分享。
作者:
Spectre
时间:
2016-4-16 12:50
看了好多贴,有什么用么。。。{:4_102:}
作者:
mzxxy77
时间:
2016-4-18 17:40
理论派
作者:
枫叶红
时间:
2016-4-19 19:24
这个内容也太详细了,还无法看明
作者:
lin620
时间:
2017-6-28 05:15
提示:
作者被禁止或删除 内容自动屏蔽
作者:
自古英雄多寂寞
时间:
2017-6-29 05:26
机率我也在算,最终输给了贪
作者:
mtuimm33
时间:
2018-1-22 16:43
真的是太深奥了{:4_102:}
作者:
syh888
时间:
2018-2-18 13:43
本人数学较差,得慢慢消化!
作者:
我爱龙玉宝宝
时间:
2018-2-20 11:52
学习了,不懂概率赌是盲目的。
作者:
默默耕耘
时间:
2018-2-22 14:14
这文章真的是只有高手才可以看的啊
作者:
yyg0716
时间:
2018-3-30 13:37
数学知识也很重要啊
作者:
dashu4l6ll
时间:
2021-11-10 17:27
真是好文章
作者:
老虾
时间:
2021-12-28 08:30
很好的一个课题,Dubo就是需要学习各方面的知识,打下稳固的理论基础,不想盲赌就要努力学习。
作者:
hhyy333
时间:
2022-2-8 14:43
无人可破的概率
作者:
刀锋
时间:
2022-2-12 09:55
好复杂,但都看完了,懂不懂不知道
作者:
ctzl2023
时间:
2022-3-2 15:19
已阅 非常棒学习了
作者:
天祭
时间:
2022-7-22 12:55
概率就是概率....而已
欢迎光临 优惠论坛 (https://www.tcelue.ooo/)
Powered by Discuz! X3.1